Highly Diastereo- and Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes via Myoglobin-Catalyzed Transfer of Trifluoromethylcarbene.
نویسندگان
چکیده
We report an efficient strategy for the asymmetric synthesis of trifluoromethyl-substituted cyclopropanes by means of myoglobin-catalyzed olefin cyclopropanation reactions in the presence of 2-diazo-1,1,1-trifluoroethane (CF3CHN2) as the carbene donor. These transformations were realized using a two-compartment setup in which ex situ generated gaseous CF3CHN2 is processed by engineered myoglobin catalysts expressed in bacterial cells. This approach was successfully applied to afford a variety of trans-1-trifluoromethyl-2-arylcyclopropanes in high yields (61-99%) and excellent diastereo- and enantioselectivity (97-99.9% de and ee). Furthermore, mirror-image forms of these products could be obtained using myoglobin variants featuring stereodivergent selectivity. These reactions provide a convenient and effective biocatalytic route to the stereoselective synthesis of key fluorinated building blocks of high value for medicinal chemistry and drug discovery. This work expands the range of carbene-mediated transformations accessible via metalloprotein catalysts and introduces a potentially general strategy for exploiting gaseous and/or hard-to-handle carbene donor reagents in biocatalytic carbene transfer reactions.
منابع مشابه
A Highly Diastereoselective and Enantioselective Phase-Transfer Catalyzed Epoxidation of β-Trifluoromethyl-β,β-disubstituted Enones with H2O2
Trifluoromethylated organic compounds, especially chiral quaternary alcohols bearing trifluoromethyl group are of important intermediates in drugs, agrochemicals and etc.An efficient epoxidation of β-CF3-β,β-disubstituted unsaturated ketones (6) has been developed with environmental benign hydrogen peroxide as the oxidant and F5-substituted chiral qua...
متن کاملPhosphoramidite gold(I)-catalyzed diastereo- and enantioselective synthesis of 3,4-substituted pyrrolidines.
In this article the utility of phosphoramidite ligands in enantioselective Au(I) catalysis was explored in the development of highly diastereo- and enantioselective Au(I)-catalyzed cycloadditions of allenenes. A Au(I)-catalyzed synthesis of 3,4-disubstituted pyrrolidines and γ-lactams is described. This reaction proceeds through the enantioselective Au(I)-catalyzed cyclization of allenenes to f...
متن کاملThree-component procedure for the synthesis of new chiral spirooxindolopyrrolizidines via catalytic highly enantioselective 1,3-dipolar cycloaddition
The catalytic highly regio-, diastereo-, and enantioselective synthesis of a small library of spiropyrrolizidineoxindolesvia a four-component 1,3-dipolar cycloaddition reaction of azomethine ylides, derived from isatin, with electron-deficient dipolarophilewas described. The process occurs at room temperature in aqueous ethanol as a green solvent and in the presence of a bidendatebis(imine)–Cu(...
متن کاملHighly Diastereo- and Enantioselective CuH-Catalyzed Synthesis of 2,3-Disubstituted Indolines
A diastereo- and enantioselective CuH-catalyzed method for the preparation of highly functionalized indolines is reported. The mild reaction conditions and high degree of functional group compatibility as demonstrated with substrates bearing heterocycles, olefins, and substituted aromatic groups, renders this technique highly valuable for the synthesis of a variety of cis-2,3-disubstituted indo...
متن کاملChiral Brønsted acid-catalyzed diastereo- and enantioselective synthesis of CF3-substituted aziridines.
A multicomponent organocatalyzed highly diastereo- and enantioselective synthesis of CF(3)-substituted aziridines is described. This reaction of in situ generated CF(3)CHN(2) and aldimines was realized by chiral Brønsted acid catalysis. The utility of the products is illustrated by easy access to β-CF(3) isocysteine and aziridine-containing dipeptides.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 139 15 شماره
صفحات -
تاریخ انتشار 2017